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The dissipative particle dynamics (DPD) simulation method was applied to simulate the aggregation behavior
of three block copolymers, (EQJPO)s, (EO)(PO)s(EO), and (POYEOQO)s(PO), in aqueous solutions.

The results showed that the size of the micelle increased with increasing concentration. The diblock copolymer
(EOxe(PO)s would form an intercluster micelle at a certain concentration range, besides the traditional
aggregates (spherical micelle, cylindrical micelle, and lamellar phase); while the triblock copolymer
(EO)X(PO)s(EO) would form a spherical micelle, cylindrical micelle, and lamellar phase with increasing
concentration, and (PG{EO)«(PO) would form intercluster aggregates, as well as a spherical micelle and
gel. New mechanisms were given to explain the two kinds of intercluster micelle formed by the different
copolymers. It is deduced from the end-to-end distance that the morphologies of the diblock copolymer and
triblock copolymer with hydrophilic ends were more extendible than the triblock copolymer with hydrophobic
ends.

1. Introduction parameters used for carrying out DPD simulation can be
obtained from the FloryHuggins theory? The elementary units

in the DPD method are soft beads. A bead contains at least
several molecules or molecular groups, but is still macroscopi-
cally small®® In our previous works, we had investigated
aggregation behavi#t and phase diagraih of surfactant

Poly(ethylene oxideypoly(propylene oxide) block copoly-
mers are an important class of amphiphilic molecules whose
physicochemical properties have been studied by many
researchers:® Attention arises from both their interesting
behavior in self-assembly af‘d thelr W'.de appl[qathn n de_ter— systems and the interaction between surfactant and poRAfier.
gency, formulation of cosmetics dispersion stabilization, lubrica- h h . f th block
tion, inks, pharmaceuticals, bioprocess, separations and synthesis In the present paper, the aggregations of three bloc

’ e ' . copolymers, (EQp(PO)s, (EO)(PO)s(EO), and (POY(EO) ¢
of nanoparticles, and others. The action of block copolymers - - -
. o . (PO) in aqueous solution were simulated by the DPD method.
depends strongly on their aggregation in the system. It is well- . . . .
- . The aim was to obtain the information on the aggregates formed
known that block copolymers have the ability to form micelle,

. . y block copolymers with the same composition but different
bicontinuous, hexagonal, and lamellar phases. There are several”’ . . .
G architecture. It had been found from these simulations that there
factors contributing to the aggregate morphology, such as

. .~ were different aggregating behaviors as the concentration or
temperature, the length ratio of each block, the concentration IR
. . . structure of the copolymer was altered. The density distribution
and structure (i.e., relative block size and block sequence) of of beads and the end-to-end distance of conolvmers could also
the copolymer;® and others discussed in literatdré2 Among Poly

block copolymers of three kinds, PE@PO, PEG-PPO-PEO, provide important information about their aggregation.

a}nd PPG-PEO-PPO (Whgre PEO and PPO are the gbbrevia- 2. Simulation Method

tions for poly(ethylene oxide) and poly(propylene oxide)), the

type of PEO-PPO-PEOQ attracts more attention than the 2.1. Theory.In the DPD method, the time evolution of the
otherst3-7 The characterization methods reported on the interacting particles is governed by Newton’s equation of
aggregations of copolymers include NMR15 X-ray scatter- ~ motior®* as given in egs 1a and 1b

ing,16 DSC (differential scanning calorimetry) and SAXS (small-

angle X-ray scattering)and so or./:18 % =7 (1a)
Computer simulation is able to provide more microscopic- dt :

level information than experiment. The simulation methods often .

used are dissipative particle dynamics (DPD¥ discontinuous % =7 (1b)

molecular dynamics (DMD}* Monte Carlo simulation3’ and dt :

Brownian dynamics simulatior?§:?” DPD, the mesoscopic - - )

method developed by Hoogerburgge and Koolman, is especiallyWhereri, i fi are the position vector, the velocity, and the total
appropriate for the simulation of solutions of amphiphilic ~ force for theith bead, respectively. All bead masses are set equal
polymer28-3° DPD simulation technique can be used to toO unity for simplicity. In the DPD model, the total force of

investigate systems that contain millions of atcths$® The beads is given in eq*2
_ C D R
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whereF; is a conservative force which is linear in the bead ~ whereZ denotes the average coordination number ¥ingis
bead separatiom'-,i'j3 is a dissipative force which is proportional  the volume of one polymer segment, whid is the product
to the relative velocity of beadsandj, and |:iR is a random of the gas constant and the Kelvin temperature. The interaction

force between a beadand its neighbor bead They are given intensity between different molecules can be indicated by the
by interaction parameters.
The diffusion coefficient of a DPD particle is a dimensionless
FC aij(l — rij)fij <1 3 parameter characterizing the flyid anql can be ir?terpreted.as the
i~ o r>1 3) ratio between the time for fluid particles to diffuse a given
distance and the time for hydrodynamic interactions to reach
o —wa(r--)(f--? y R <1 steady. state on the same distance. The diffusion coefficient can
Fi ={ AT 4) be derived as followd?
Focus on the equation of motion of a single particle and
ignore the conservative forces.

0 =1

R — ow™(r)&Ty Ty <1 )
o ry>1 dy, 5 o
—=>F+YF (11)
whererj = [fi — Tj|, fij = Ty/rj and whereg; is the maximum dt =]
repulsive force between particieand particlej. Unlike the
conservative force, the weight function®(r;) and wR(rj) of
the dissipative forces and random forces couple together to form
a thermostat. Espagnol and Wari&show the relations between
the two functions

The drag force is linear in the velocity difference, and thus, the
part due to the motion of thigh particle may be separated out.
Dropping the other part but retaining the random force gives a
Langevin equation for the motion of thth particle

dy; o

@°(r) = [0"(N]* G t-=F (12)
o =2k T (6) where

whereo andy are the two multiplicative constants which are 1 P T
related by temperaturg andT is the absolute temperature and -= wa(r”)—
ks is the Boltzmann constant. For simplicity, a choiceu®Xr) T =
is taken as follows: R R R

1-r?r<1 i

() = [F O = {( rre ™ | .
0 rz1 Replacing the sum for the drag factor by an integral, and

The Newtonian equation of position and velocity of particles likewise _in the calculation of the statistics of the random force
is solved by a modified version of the velocity Verlet algo- FF, obtains
rithm#1 In the simulation, the radius of interaction, the particle 1 4x
mass, and the temperature were chosencas m = kT =1 == ﬂfm dr r?w®(r)
and o = 3.67, while the particle density = 3 (taking into T 3 70
account the computational efficiency,= 3 is a reasonable

R
choice). The only parameter to be determined is the maximum FT=0
repulsive forcea;, which is chosen according to the linear R Rour 5 > Ryx12 ,
relation with Flory-Hugginsy paramete F(t)-FR(t) 0= 4no”p [ drrfo™(]?0(t—t) (14)
o ~ oy + 3.27; for p =3 (8) The Langevin equation is solved straightforwardly, and therefore
They parameter between DPD pairs of particles can be obtained D= % j:’ dtla,(0)-v;(t) = kT (15)

from the calculation of the mixing energy with Blend module

of Cerius 2. In Blend module, the interaction energies of mixing The fluctuation-dissipation theorem in this case takes the form
between different particleEnix are calculated using the fol-

lowi tiorf*2 o w0
owing equatio o [ dr 7[R0 = 2ykeT [ dr r0°(r)  (16)
1
Enix(T) = —(ZZ"- E(T) — ZZH E;(T) 9) Inserting the expression for the dissipative function gives the
25 =] diffusion coefficient
wherekE; is the interaction energy of the complex composed of D = 48k T/27ypr 3 (17)
one moleculé and one moleculg andz; is the coordination ¢
number, i.e., the number of moleculgsvhich can surround 2.2. Simulation Parameters.Three kinds of copolymers

one molecule in space. After the mixing energy of two particles  (EQ),¢(PO)s, (EO)(PO)s(EO), and (POYEO)sPO) were
has been CalCUIated, the interaction parameter can be obtaine hosen in order to simulate the aggregation process of block

via the following equatiort? copolymer with various structures in aqueous solution. Suppose
we had a mixture of copolymer and water with the amougts
=2V, Emix(T) (10) andny, and a total amount = n, + ny of the mixture. Then,
¢4 RT the fractionny/n would be the relative amount of component
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= p TABLE 1: Interaction Parameters &; (in DPD units) of the
Simulation System
E P w
E 25.00 48.87 35.93
b P 48.87 25.00 38.32

. w 35.93 38.32 25.00

] ) i ~ periodic boundary conditions was adopted. In Blend module,
Figure 1. Schematic representation of block copolymer and water in ¢, ethylene oxide molecules, three propylene oxide molecules,
DPD system. and one water molecule were chosen as three units to calculate
the Emix, Z, and Vseg in which several interactions were
considered, such as hydrogen bond, van der Waals interaction,
and so on. For example, the average coordination nuzper

is 3.6, and the volume ofg is 0.76 nni. Then, the interaction
parameters between different beads obtained by eqs 9 and 10
were given in Table 1. At the simulation temperature, it could
be deduced from the interaction parameter that bead E was more
hydrophilic than P. The dissipative parametewas set to a
value of 4.5kT. The only length scale in the system was the
cutoff radiusrc which was the length unit in the simulation.
For each system, 20 000 time steps per simulation were carried
out.

diffusivity/DPD units

3. Simulation Results and Discussion

With one diffusion plot (Figure 2) of the simulation results
as an example, it could be seen that equilibrium was reached
before 3000 time steps, so 20 000 time steps per simulation was

simulation time steps sufficient for the simulation. It could be seen from Figure 2
Figure 2. Diffusion plot of beads of BPE, with the simulation steps  that the diffusibility of bead E was better than that of bead P.
increasing at, = 0.19. 3.1. Morphology of Aggregates. The aggregates of
(EO)6(PO)g at different concentrations were shown in Figure
copolymer present, which would be called the molar fraction 3. The red portion represented the hydrophobic bead P, the green
of copolymer and denotex,. one represented the hydrophilic bead E, and the water was

PPO, PEO, and water were represented by DPD beads P, Eneglected in all figures for clarity (the same for Figuressl.
and W as shown in Figure 1. According to the refererfé€s, It was seen that diblock copolymer (EPO)s could form
one bead E represented four ethylene oxide molecules, one beagpherical (Figure 3a), cylindrical (Figure 3b), intercluster micelle
P represented three propylene oxide molecules, and one beadFigure 3c), and lamellar phase (Figure 3d) with increasing
W represented one water molecule for convenience in Blend concentration, and in addition, the aggregate sizes increased with
module of Cerius 2. So, three kinds of copolymers mentioned increasing concentration. The hydrophilic EO chains were

T % T * T " T *. 1
1o 2o 3mo {mo so

above were simply represented byPE E-PsE,, and RBE4Ps in located outside, while the hydrophobic PO chains were located
the simulation. Thus, copolymers were constructed by connect-inside the aggregates.
ing the neighboring beads together via the harmonic spﬁﬁgs The probable reasons for formation of spherical and cylindri-

= 3,Cr;.3" The spring constant was chosen as 4 according to cal micelles were the hydrophobic interaction between the
ref 43. In the simulation, a 3D box of size 2010 x 10 with hydrophobic PO chains and the hydrogen bonds between EO

b c d

a - b o c
Figure 4. Snapshots of typical aggregates from simulation for @@@))s(EO) at different molar fractions.
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Figure 4 showed the simulated results of (E@BP)s(EO)s
at different concentrations. Triblock copolymer (EB®O)s-
(EO)s could form spherical (Figure 4a) and cylindrical micelles
(Figure 4b), as well as lamellar phase (Figure 4c) in aqueous
solution with increasing concentration increasing. There had
been no report on the formation of cylindrical micelles from
triblock copolymers with hydrophilic ends and a hydrophobic
middle block up to now. To understand the formation process
of the cylindrical micelle well, the variation of the morphology
(d) —— of (EO)(PO)s(EO) aggregates with simulation time was shown

PR s AL : in Figure 5 at the molar fractior, = 0.19: the copolymers

started to form small aggregates with their hydrophobic chains
attracted together by hydrophobic interaction as soon as the
copolymers were added to water. Bigger aggregates formed by
hydrophobic interaction when the hydrophobic chains of dif-
ferent small aggregates contacted other because of collision.
The hydrophobic chains of large aggregates minimized their
exposure to water as much as possible. On the contrary, the
Figure 5. Aggregation evolution of (EQ)PO)s(EO) observed with hydrophilic chains preferred contact with water molecules. So,
the simulation steps increasing»xt= 0.19. (a) 1000, (b) 2000, (c) aggregates readjusted to form cylindrical micelles.

3000, and (d) 20 000 steps. The aggregates of copolymer (RBO)6(PO) simulated at
and water. The mechanism of the intercluster and lamellar phasedifferent molar fractions were shown in Figure 6. It was found
formation may be that different aggregates shared the samethat the spherical micelles (Figure 6a) formed at low concentra-
hydrated layer. In the hydrated layer, hydrophilic chains of tions. It was clearly seen that most of the copolymer chain
different aggregates formed hydrogen bonds with water, which adopted the loop shape (Figure 6b) with the end blocks of the
were linked together by hydrogen bonds between water mol- copolymer chain aggregating together in the core and the
ecules. Thus, there were also two kinds of forces contributing hydrophilic middle block in contact with water. A few copoly-
to the formation of intercluster micelles and lamellar phase: mer chains adopted extendible conformation. With the concen-
hydrogen bonds between EO and water and between water andration increasing, intercluster micelles (Figure 6b) formed for
water of the hydrated layer; hydrophobic interaction between the following reasons: different aggregates shared the same
hydrophobic sections of different copolymer chains. The results hydrated shell, just as the intercluster micelles formed by the
agrees with those obtained from theory and experirffent. diblock copolymer; middle blocks of the extendible triblock

(b)

a b
Figure 6. Snapshots of typical aggregates from simulation for geED)(PO) at different molar fractions.
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Figure 7. Density distribution of beads alongaxis according to the different aggregates: the red line represents the density of P beads, green
represents the E beads, and the blue line represent W beads.
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triblock (EO}(PO)g(EO) took cylindrical micelles and lamellar
phase, diblock (EQ)(PO)s tended to form cylindrical micelles,
intercluster micelles, and lamellar phase, and triblock ¢PO)
(EO)6(PO)Y tended to form intercluster aggregates and gels.
Different from the traditional aggregates formed by low mo-
lecular weight surfactants, aggregates formed by the three
studied copolymers included a large amount of water. For
diblock copolymer (EO)(PO)s, intercluster micelles formed
because different aggregates shared the hydrated shell. For
triblock copolymer (PQYEQO) (PO, intercluster micelles
formed for two reasons: different aggregates shared the hydrated
shell and the hydrophilic block acted as a bridge. In comparison
with block copolymer (PQJEO)6(PO), the other two copoly-
mers adopted more extendible conformations in aqueous solu-
tion. The simulation results also showed that bead E diffused
more rapidly than bead P.
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